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Abstract— In this paper we describe an approach to concur-
rently localize a robot and to build a feature based map using
laser sensor. Stochastic simultaneous localization and mapping
(SLAM) is performed by storing the robot pose and map
landmarks in a single state vector, and estimating this state vector
via a recursive process of prediction and updating. In our case,
these estimates are updated using an extended Kalman filter
(EKF). The main novelty of this proposal is the development and
test of an adaptive measurement covariance matrix that permits
to include close and distant features in the updating stage of
the EKF–SLAM algorithm, providing more precision to closer
detected features.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is an
essential ability for autonomous mobile robots exploring un-
known environments. The problematic of SLAM lies in the
fact that an accurate estimation of the robot pose is required
to obtain a good map of the environment, and to reduce the
unbounded growing odometry errors requires to associate sen-
sor measurements with a precise map [10]. The efficiency and
robustness of the SLAM process is determined by the chosen
map representation [8]. Typical choices for this representation
include occupancy grids [9], topological maps [5] and feature
maps [6].

In this paper, a feature based approach is employed to solve
the SLAM problem. Feature maps are a viable representation
for long-term convergent SLAM in medium-scale environ-
ments [1]. It allows the use of multiple models to describe the
measurement process for different parts of the environment
and it avoids the data smearing effect [10]. Feature map
SLAM implies to add observed landmarks to the map using the
robot pose as a reference, while existing map landmarks are
employed to estimate the robot pose. Then, the uncertainty
of sensor measurements provokes uncertain estimates of all
parameters, i.e. the robot pose and the map landmark locations,
and these uncertainties are correlated [1]. Consistent stochastic
estimation requires that correlations between parameters are
explicitly maintained. In our case, a basic stochastic SLAM
algorithm is used. This algorithm stores all parameters in a
state vector and updates these estimates using an extended
Kalman filter (EKF).

In the standard EKF–based approach to SLAM, the robot
pose and landmark locations are represented by a stochastic

state vector. The stochastic SLAM is performed by estimat-
ing the state vector via a recursive process of prediction,
data association and updating. The prediction stage provides
an estimation of the robot pose based on odometry. Then,
landmarks are extracted from the environment and associated
to previously stored ones. The updating stage employs the
data association results to determine the posterior estimated
robot pose. In this last stage, each landmark is typically
characterized by its location relative to the robot and by an
observation covariance. This observation covariance models
the error of the data acquisition system. The covariance matrix
values are experimentally estimated and are usually constant
for every landmark location. In our case, features are extracted
from laser data and, therefore, observation covariance values
are low. However, in order to avoid the acquisition of false
landmarks, several authors propose to do not take into account
landmarks which are more distant from the robot that a fixed
threshold [1]. This reduction of the set of detected landmarks
can be specially negative for the EKF–SLAM approach when
the environment does not provide a dense map of landmarks.
In these case, the updating rate is reduced and the robot pose
uncertainty can be excessively increased. In this paper, we
propose an observation covariance whose values depend on the
distance between robot and detected landmarks. Thus, distant
landmarks can be used to update the robot pose, although the
observation covariance associated to these landmarks will be
higher than the associated to closer landmarks.

The rest of the paper is organized as follows: The landmark
acquisition and data association using laser data are presented
in Section 2. This section also describes how is obtained
the adaptive observation covariance and its application in the
landmark uncertainty. Section 3 presents experimental results
and, finally, Section 4 summarizes conclusions and future
work.

II. LASER DATA LANDMARK ACQUISITION AND

ASSOCIATION USING AN ADAPTATIVE OBSERVATION

COVARIANCE

In the standard EKF–based approach to SLAM, the robot
pose and landmark locations at time step k are represented
by a stochastic state vector x

k
a with estimated mean x̂

k
a and

estimated error covariance P
k
a. This state vector contains an
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estimation of the robot pose, x̂
k
v , and the estimated environ-

ment landmarks positions, x̂
k
m, all with respect to a base

reference W . This concatenation is necessary as consistent
SLAM relies on the maintenance of correlations P

k
vm between

robot and map [1]. In this work, we use the robot pose before
the first motion (at step k=0) as the base reference (W = x

0
v),

because it improves the consistency of the process [3]. Thus,
the map can be initialized with zero covariance for the robot
pose, x̂

0
a = 0, P

0
a = 0. For convenience, the k notation can

be dropped in this section as the sequence of operations is
apparent from its context. Then, the mean x̂a and covariance
Pa of the state vector can be defined as

x̂a =

[
x̂v

x̂m

]
Pa =

[
Pvv Pvm

P
T
vm Pmm

]
(1)

When the robot pose and map landmarks are stored in a single
state vector, stochastic SLAM [1] is performed by estimating
the state parameters via a recursive process of prediction,
landmark observation and association and updating. The pre-
diction stage deals with robot motion based on incremental
dead reckoning estimates, and increases the uncertainty of
the robot pose estimate. Then, new landmarks are acquired
from the environment. These landmarks are associated to
the previously stored ones. The update stage uses this data
association to improve the overall state estimate. Finally, if
the data association process determines that a new landmark
not stored in the map have been observed, it will be added to
the state vector through an initialization process called state
augmentation. This state augmentation stage must be carefully
performed in order to avoid the inclusion of false landmarks
in the state vector.

Laser sensor typically provides dense information of the
environment in a single scan which presents high angular
precision. Typical feature based approaches to SLAM which
use laser data perform features acquisition and data association
tasks in two consecutive steps. Firstly, a segmentation step,
where the laser range readings are processed to obtain simple
geometric features such as line segments, curve segments or
corners (landmark acquisition). Then, during the map building
process, a second stage looks for matches between the features
obtained from different scans, based on a probabilistic model
of the sensor and the robot motion (data association). On
the contrary, other approaches employ raw laser data as map
feature and solve the data association by computing the robot
pose that maximizes scan-to-scan [4] or scan-to-map [11]
correlations. In these approaches, the density and precision of
the laser data is fundamental to achieve a robust scan matching
process. In this work, we differentiate feature acquisition and
data association tasks. Thus, next sections describe the land-
mark acquisition and data association stages of our proposed
EKF–SLAM approach. Section II-C deals with the adaptive
observation covariance calculation and its application in the
EKF updating stage. Finally, the state augmentation stage is
briefly described.

A. Corner acquisition from laser data

In this work, we employ the curvature information to
characterise the local planar scan provided by the laser sensor.
The curvature index at each range reading of the laser scan is
adaptively filtered according to the distance between possible
corners in the whole laser scan. This method permits to remove
noise, but scan features are nevertheless detected despite their
natural scale. For each range reading i of a laser scan, the
proposed method for adaptive curvature estimation in laser
scan data consists of the following steps:

1) Calculation of Kf (i) and Kb(i), the maximum length of
laser scan presenting no discontinuities on the right and
left sides of the range reading i respectively. Kf (i) is
calculated by comparing the Euclidean distance from i to
its Kf (i)-th neighbour (d(i, i+Kf (i))) to the real length
of the laser scan between both range readings(l(i, i +
Kf (i))). These distances tend to be the same in absence
of corners, even if laser scans are noisy. Otherwise, the
Euclidean distance is quite shorter than the real length.
Thus, Kf (i) is the largest value that satisfies

d(i, i + Kf (i)) > l(i, i + Kf (i)) − Uk (2)

where Uk is a constant value that depends on the
noise level tolerated by the detector. Kb(i) is also set
according to Eq. (2), but using i − Kb(i) instead of
i+Kf (i). In our case, it has been experimentally proven
that Uk equal to 1.0 works correctly.

2) Calculation of the local vectors
−→
fi and

−→
bi associated to

each range reading i. These vectors present the variation
in the x and y axis between range readings i and
i + Kf (i) and between i and i − Kb(i). If (xi, yi) are
the coordinates of the range reading i, the local vectors
associated to i are defined as

−→
fi = (xi+Kf (i) − xi, yi+Kf (i) − yi) = (fxi

, fyi
)−→

bi = (xi−Kb(i) − xi, yi−Kb(i) − yi) = (bxi
, byi

)
(3)

3) Calculation of the angle associated to i. According to
previous works [7], the angle at range reading i can be
estimated as follows

|Kθ(i)| =
1

2
·
(

1 +

−→
fi · −→bi

|−→fi | · |−→bi |

)
(4)

4) Detection of corners over |Kθ(i)|. The obtained curva-
ture index represents the curvature associated to each
range reading in an absolute manner. Corners are those
range readings which satisfy the following conditions: i)
they are local peaks of the curvature function and ii) their
|Kθ(i)| values are over the minimum angle required to
be considered a corner instead of a spurious peak due
to remaining noise (θmin).

B. Observed and stored corner association

Once corners have been extracted from the laser data,
they must be associated to previously stored ones. Correct
correspondence of observed and stored corners is essential
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for consistent map building and robot pose estimation. Thus,
successful data association involves the detection and rejec-
tion of spurious measurement, because a single failure may
invalidate all the SLAM process. When corners are considered
as landmarks, the map is represented by a set of practically
identical features, distinguishable only by their positions.
Because of this representation, correspondences established
by the data association stage are constrained by statistical
geometric information.

In this work, we perform the association validation in obser-
vation space using the innovation sequence and its predicted
covariance. The innovation sequence νij relates observed
measurement z to the predicted observation h(x̂j) for target
xj by the difference νij = zi−h(x̂j) [1]. Given an observation
innovation νij with covariance Sij , the normalised innovation
squared (NIS) is defined as [2]

NIS ≡ νT
ijS

−1
ij νij (5)

If the innovation have a Gaussian distribution, then νijν
T
ij will

form a χ2 distribution. This is the basis of a validation gate
approach: observations inside a fixed region of the defined
χ2 distribution are accepted, and observations that make the
NIS to fall outside this region are rejected. This assumption is
achieved by comparing NIS with a threshold value γn. This
value is defined by fixing the region of acceptance of the χ2

distribution (e.g., in our experiments, the innovation vector is
of dimension 2, and the gate γ2 equal to 4.0, if zi is truely an
observation of landmark xj the association will be accepted
with 90% of probability).

The validation gate defines a region in the observation
space centered about the predicted observation h(x̂j). Then,
an acceptable observation must fall inside this region. Data
association ambiguity occurs if either multiple observations
fall within the validation gates of a particular target, or a
single observation lies within the gates of multiple targets.
Furthermore, it is possible that an observation might arise from
clutter or non-tracked targets leading to false associations even
with the satisfaction of unique gating conditions. The most
common ambiguity resolution method is nearest neighbour
data association. Given a set of observations, Z, within the
validation gate of target x, a normalised distance NDl can be
calculated to each zl ∈ Z

NDl = νT
l S

−1

l νl + log|Sl| (6)

Nearest neighbour data association then chooses the observa-
tion that minimizes NDl.

C. EKF update

If a corner already stored in the map as estimate (x̂i, ŷi)
is observed by the laser sensor with the measurement

z =

[
x
y

]
R =

[
σ2

xx σ2
xy

σ2
xy σ2

yy

]
(7)

where (x, y) are the Cartesian coordinates of the observed
corner and R is the observation covariance, then the observed

corner is related to the map by

ẑi = hi(x̂a) =

[
(x̂i − x̂v) cos φ̂v + (ŷi − ŷv) sin φ̂v

−(x̂i − x̂v) sin φ̂v + (ŷi − ŷv) cos φ̂v

]

(8)
The Kalman gain Ki can be obtained as

νi = z − hi(x̂
−
a )

Si = ∇hxa
P

−
a ∇hT

xa
+ R

Ki = P
−
a ∇hT

xa
S
−1
i

(9)

where the Jacobian ∇hxa
can be obtained as

∇hxa
=

(
∂hi

∂xa

)
x̂−

a

(10)

It can be noted that the Jabobian ∇hxa
only presents non-

zero terms align with the positions of the robot states and
the observed feature states in the augmented state vector. The
posterior SLAM estimate is determined from

x̂
+
a = x̂

−
a + Kiνi P

+
a = P

−
a − KiSiK

T
i (11)

In this work, the measurement covariance matrix R has been
obtained from a set of experiments for different laser settings
(angle increment) and detected feature distances. In order to
extrapolate the values extracted from experiments and obtain
the matrix values for any feature distance or laser settings,
a polynomial least square fitting has been used for each
detected feature. Therefore, each variance in the measurement
covariance matrix is a function of the distance. It permits to
compute the covariance values for each detected landmark.

In particular, for one degree of angle increment, the values
of the matrix are determined by the following expressions:

σ2
xx = −6.1465 · 10−11 d2 + 7.7383 · d + 9.98563 · 10−6

σ2
yy = −2.4043 · 10−8 d2 + 9.5363 · 10−7 d + 0.01247

σ2
xy = −4.8967 · 10−10 d2 + 2.887 · 10−8 d + 2.4706 · 10−4

(12)
where d is the distance between the landmark and the robot
in centimeters. When the laser precision is increased to 0.5
degree of angle increment, the variances are determined by:

σ2
xx = −1.3888 · 10−10 d2 + 2.0697 · 10−7 d + 9.599 · 10−6

σ2
yy = −4.08 · 10−8 d2 − 1.0506 · 10−6 d + 0.03577

σ2
xy = 1.6691 · 10−9 d2 − 2.6607 · 10−8 d − 0.001461

(13)
The main advantage of using an adaptive covariance matrix
is that distant corners are associated to higher variances than
closer corners. This provides more precision to closer detected
corners. Besides, distant corners can be employed in the
updating stage, although their associated covariance matrices
provide them less precision. In this way, we avoid to reject
distant corners and the corresponding reduction of the set of
possible correct associations.

D. State vector augmentation

When the environment is explored, new landmarks are ob-
served and must be added to the map under certain conditions.
To initialise new landmarks, the state vector and covariance
matrix are augmented with the values of the new observation,
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z, and its covariance, R, as a relative measure to the robot.
In the described approach, we employ the standard procedure
for state vector augmentation. Thus, new landmarks are added
to a potential list [12], and only if they are observed several
times, they are transferred from this list to the confirmed map.

Then, when a new observation is obtained, the described
algorithm firstly tries to associate it with a landmark stored in
the confirmed map. If this association fails, it tries to associate
it with a landmark in the potential list. Failing that, it becomes
a new potential landmark. As it is commented above, several
associations to a particular potential landmark will transfer it
to the map. Similarly, a potential landmark will be demised
when several observations after its inclusion in the list do not
associate any observed measurement with it.

In order to increase landmark stability, a quality index is
computed for each landmark stored in the map [12]. When
a stored landmark is observed again, its quality index is
recomputed and landmarks that do not achieve a minimim
threshold can be deleted from the map.

III. EXPERIMENTAL RESULTS

Figs. 1.a shows a experimental result obtained by running
the proposed algorithm. Figure illustrates the odometry and
the estimated trajectory. The robot pose uncertainty has been
drawn over the trajectory. The major axis of the final uncer-
tainty ellipse is 1.6 m. Fig. 1b shows the determinant of the
robot pose covariance. It can be noted the high rate of robot
pose updating due to the dense presence of landmarks. This
fact is granted by the existence of distant landmarks, which can
be included without disturbing the whole process due to the
use of an adaptive observation covariance. Finally, it must be
noted that the whole EKF–SLAM algorithm runs every 300 ms
on the 400MHz Versak6 PC 104+ embedded on our Pioneer
2AT mobile platform. The landmark acquisition algorithm
only takes 25 ms including 180o laser data acquisition (angle
increment of 0.5 degree).

IV. CONCLUSIONS AND FUTURE WORK

Experiments show that the adaptive observation covariance
permits to introduce more landmarks for the updating stage of
the EKF–based SLAM and thus, its efficiency is improved. On
the other hand, the proposed landmark extraction algorithm re-
duces the computational cost associated to the whole process.
This fact is specially interesting because it avoids large periods
without updating. The increasing of the updating rate reduces
the robot pose uncertainty and avoids that data association
becomes very fragile [1].

Future work will be focused on reducing the linearization
errors inherent to the EKF–SLAM process [1]. The proposed
method can be combined with local maps or robocentric
mapping [3] to further improve map consistency.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish Min-
isterio de Educación y Ciencia (MEC) project no. TIN2005-
01349.

Fig. 1. a) Estimated trajectory of the robot; and b) determinant of the robot
pose covariance

REFERENCES

[1] T. Bailey. Mobile robot localisation and mapping in extensive outdoor en-
vironments, PhD Thesis, Australian Centre for Field Robotics, University
of Sydney, 2002.

[2] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with Applications
to Tracking and Navigation, John Wiley and Sons, 2001.

[3] J. A. Castellanos, J. Neira and J. D. Tards. Limits to the consistency of
EKF-based SLAM, 5th IFAC Symp. on Intelligent Autonomous Vehicles
(IAV’04), Lisbon-Portugal, 2004.

[4] J. S. Gutmann and K. Konolige. Incremental mapping of large cyclic
environments, IEEE Int. Symp. on Computational Intelligence in Robotics
and Automation, pp. 318-325, 1999.

[5] B. Kuipers and Y. T. Byun. A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations, Journal of
Robotics and Autonomous Systems, vol. 8, pp. 47-63, 1991.

[6] J. J. Leonard, H. F. Durrant-Whyte, and I. J. Cox. Dynamic map building
for an autonomous robot, Int. Journal of Robotics Research, vol. 11(4),
pp. 286-298, 1992.

[7] P. Reche, C. Urdiales, A. Bandera, C. Trazegnies and F. Sandoval. Corner
detection by means of contour local vectors, Electronics Letters, vol.
38(14), pp. 699-701, 2002.

[8] S. Roumeliotis and G. A. Bekey. SEGMENTS: A layered, dual kalman
filter algorithm for indoor feature extraction, Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, pp. 454-461, 2000.

[9] A. C. Schultz and W. Adams. Continuous localization using evidence
grids, Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2833-2839,
1998.

[10] J. D. Tardós, J. Neira, P. M. Newman and J. J. Leonard. Robust mapping
and localization in indoor environments using sonar data, Int. Journal of
Robotics Research, pp. 311-330, 2002.

[11] S. Thrun. An online mapping algorithm for teams of mobile robots, Int.
J. Robotics Research, vol. 20(5), pp. 335-363, 2001.

[12] M.W.M. G. Dissanayake, P. Newman, S. Clarck, M.F. Durrant-White and
M.Csorba. A solution to the simultaneous localization and map building
(SLAM) problem. IEEE trans. on robotics and automation, vol. 17 (3),
pp. 229-241, 2001.

448


